80 research outputs found

    Interaction-induced current-reversals in driven lattices

    Full text link
    We demonstrate that long-range interactions can cause, as time evolves, consecutive reversals of directed currents for dilute ensembles of particles in driven lattices. These current-reversals are based on a general mechanism which leads to an interaction-induced accumulation of particles in the regular regions of the underlying single-particle phase space and to a synchronized single-particle motion as well as an enhanced efficiency of Hamiltonian ratchets.Comment: 5 pages, 5 figure

    Formation of density waves via interface conversion of ballistic and diffusive motion

    Full text link
    We develop a mechanism for the controlled conversion of ballistic to diffusive motion and vice versa. This process takes place at the interfaces of domains with different time-dependent forces in lattices of laterally oscillating barrier potentials. As a consequence long-time transient oscillations of the particle density are formed which can be converted to permanent density waves by an appropriate tuning of the driving forces. The proposed mechanism opens the perspective of an engineering of the nonequilibrium dynamics of particles in inhomogeneously driven lattices.Comment: 5 figure

    Phase Synchronization in Railway Timetables

    Full text link
    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern

    Recoverable Robustness by Column Generation

    Full text link
    Real-life planning problems are often complicated by the occurrence of disturbances, which imply that the original plan cannot be followed anymore and some recovery action must be taken to cope with the disturbance. In such a situation it is worthwhile to arm yourself against common disturbances. Well-known approaches to create plans that take possible, common disturbances into account are robust optimization and stochastic programming. Recently, a new approach has been developed that combines the best of these two: recoverable robustness. In this paper, we apply the technique of column generation to find solutions to recoverable robustness problems. We consider two types of solution approaches: separate recovery and combined recovery. We show our approach on two example problems: the size robust knapsack problem, in which the knapsack size may get reduced, and the demand robust shortest path problem, in which the sink is uncertain and the cost of edges may increase

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Susceptibility of optimal train schedules to stochastic disturbances of process times

    Get PDF
    This work focuses on the stochastic evaluation of train schedules computed by a microscopic scheduler of railway operations based on deterministic information. The research question is to assess the degree of sensitivity of various rescheduling algorithms to variations in process times (running and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced rescheduling algorithms. Computational results are based on a complex and densely occupied Dutch railway area; train delays are computed based on accepted statistical distributions, and dwell and running times of trains are subject to additional stochastic variations. From the results obtained on a real case study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact on the scheduler performance

    Designing bus transit services for routine crowd situations at large event venues

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    The decision rule approach to optimization under uncertainty: methodology and applications

    Get PDF
    Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naĂŻvely partition or discretize the support of the random problem parameters are limited to small and medium-sized problems, or they require restrictive modeling assumptions (e.g., absence of recourse actions). In the last few decades, several solution techniques have been proposed that aim to alleviate the curse of dimensionality. Amongst these is the decision rule approach, which faithfully models the random process and instead approximates the feasible region of the decision problem. In this paper, we survey the major theoretical findings relating to this approach, and we investigate its potential in two applications areas
    • 

    corecore